Copied to
clipboard

G = C42.674C23order 128 = 27

89th non-split extension by C42 of C23 acting via C23/C22=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.674C23, D4(C4⋊C8), Q8(C4⋊C8), C43(C8○D4), D4.8(C4⋊C4), C4○D4.58D4, (C4×D4).22C4, Q8.8(C4⋊C4), C4○D4.10Q8, (C4×Q8).21C4, C4.61(C22×Q8), C4⋊C8.353C22, (C2×C4).635C24, C42.202(C2×C4), (C2×C8).471C23, C4.187(C22×D4), C4⋊M4(2)⋊31C2, C2.9(Q8○M4(2)), (C22×C8).428C22, C23.139(C22×C4), (C2×C42).753C22, C22.164(C23×C4), C42.6C2227C2, (C22×C4).1503C23, C42⋊C2.284C22, (C2×M4(2)).338C22, C4○D4(C4⋊C8), (C2×Q8)(C4⋊C8), (C2×C4⋊C8)⋊43C2, C4.20(C2×C4⋊C4), C2.9(C2×C8○D4), C22.2(C2×C4⋊C4), C4⋊C4.214(C2×C4), (C4×C4○D4).10C2, (C2×C8○D4).21C2, C2.21(C22×C4⋊C4), (C2×C4).313(C2×Q8), (C2×D4).247(C2×C4), (C2×C4).1080(C2×D4), C22⋊C4.65(C2×C4), (C2×Q8).224(C2×C4), (C22×C4).329(C2×C4), (C2×C4).249(C22×C4), (C2×C4○D4).339C22, C4⋊C8(C2×C4○D4), SmallGroup(128,1638)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C42.674C23
C1C2C4C2×C4C22×C4C2×C4○D4C4×C4○D4 — C42.674C23
C1C22 — C42.674C23
C1C2×C4 — C42.674C23
C1C2C2C2×C4 — C42.674C23

Generators and relations for C42.674C23
 G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=b, ab=ba, cac-1=a-1, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=b2d >

Subgroups: 316 in 242 conjugacy classes, 174 normal (18 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C2×D4, C2×Q8, C4○D4, C4⋊C8, C4⋊C8, C2×C42, C42⋊C2, C4×D4, C4×Q8, C22×C8, C2×M4(2), C8○D4, C2×C4○D4, C2×C4⋊C8, C4⋊M4(2), C42.6C22, C4×C4○D4, C2×C8○D4, C42.674C23
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, C24, C2×C4⋊C4, C8○D4, C23×C4, C22×D4, C22×Q8, C22×C4⋊C4, C2×C8○D4, Q8○M4(2), C42.674C23

Smallest permutation representation of C42.674C23
On 64 points
Generators in S64
(1 63 55 10)(2 11 56 64)(3 57 49 12)(4 13 50 58)(5 59 51 14)(6 15 52 60)(7 61 53 16)(8 9 54 62)(17 35 31 46)(18 47 32 36)(19 37 25 48)(20 41 26 38)(21 39 27 42)(22 43 28 40)(23 33 29 44)(24 45 30 34)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 43)(10 44)(11 45)(12 46)(13 47)(14 48)(15 41)(16 42)(25 51)(26 52)(27 53)(28 54)(29 55)(30 56)(31 49)(32 50)(33 63)(34 64)(35 57)(36 58)(37 59)(38 60)(39 61)(40 62)
(1 17)(2 18)(3 19)(4 20)(5 21)(6 22)(7 23)(8 24)(9 45)(10 46)(11 47)(12 48)(13 41)(14 42)(15 43)(16 44)(25 49)(26 50)(27 51)(28 52)(29 53)(30 54)(31 55)(32 56)(33 61)(34 62)(35 63)(36 64)(37 57)(38 58)(39 59)(40 60)

G:=sub<Sym(64)| (1,63,55,10)(2,11,56,64)(3,57,49,12)(4,13,50,58)(5,59,51,14)(6,15,52,60)(7,61,53,16)(8,9,54,62)(17,35,31,46)(18,47,32,36)(19,37,25,48)(20,41,26,38)(21,39,27,42)(22,43,28,40)(23,33,29,44)(24,45,30,34), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,41)(16,42)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,49)(32,50)(33,63)(34,64)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,45)(10,46)(11,47)(12,48)(13,41)(14,42)(15,43)(16,44)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,61)(34,62)(35,63)(36,64)(37,57)(38,58)(39,59)(40,60)>;

G:=Group( (1,63,55,10)(2,11,56,64)(3,57,49,12)(4,13,50,58)(5,59,51,14)(6,15,52,60)(7,61,53,16)(8,9,54,62)(17,35,31,46)(18,47,32,36)(19,37,25,48)(20,41,26,38)(21,39,27,42)(22,43,28,40)(23,33,29,44)(24,45,30,34), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,41)(16,42)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,49)(32,50)(33,63)(34,64)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,45)(10,46)(11,47)(12,48)(13,41)(14,42)(15,43)(16,44)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,61)(34,62)(35,63)(36,64)(37,57)(38,58)(39,59)(40,60) );

G=PermutationGroup([[(1,63,55,10),(2,11,56,64),(3,57,49,12),(4,13,50,58),(5,59,51,14),(6,15,52,60),(7,61,53,16),(8,9,54,62),(17,35,31,46),(18,47,32,36),(19,37,25,48),(20,41,26,38),(21,39,27,42),(22,43,28,40),(23,33,29,44),(24,45,30,34)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,43),(10,44),(11,45),(12,46),(13,47),(14,48),(15,41),(16,42),(25,51),(26,52),(27,53),(28,54),(29,55),(30,56),(31,49),(32,50),(33,63),(34,64),(35,57),(36,58),(37,59),(38,60),(39,61),(40,62)], [(1,17),(2,18),(3,19),(4,20),(5,21),(6,22),(7,23),(8,24),(9,45),(10,46),(11,47),(12,48),(13,41),(14,42),(15,43),(16,44),(25,49),(26,50),(27,51),(28,52),(29,53),(30,54),(31,55),(32,56),(33,61),(34,62),(35,63),(36,64),(37,57),(38,58),(39,59),(40,60)]])

50 conjugacy classes

class 1 2A2B2C2D···2I4A4B4C4D4E···4N4O···4T8A···8H8I···8T
order12222···244444···44···48···88···8
size11112···211112···24···42···24···4

50 irreducible representations

dim111111112224
type+++++++-
imageC1C2C2C2C2C2C4C4D4Q8C8○D4Q8○M4(2)
kernelC42.674C23C2×C4⋊C8C4⋊M4(2)C42.6C22C4×C4○D4C2×C8○D4C4×D4C4×Q8C4○D4C4○D4C4C2
# reps1336121244482

Matrix representation of C42.674C23 in GL4(𝔽17) generated by

16000
01600
00130
0094
,
4000
0400
0010
0001
,
2000
0200
00116
00016
,
13900
4400
00160
00016
,
161500
0100
00160
00016
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,13,9,0,0,0,4],[4,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[2,0,0,0,0,2,0,0,0,0,1,0,0,0,16,16],[13,4,0,0,9,4,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,15,1,0,0,0,0,16,0,0,0,0,16] >;

C42.674C23 in GAP, Magma, Sage, TeX

C_4^2._{674}C_2^3
% in TeX

G:=Group("C4^2.674C2^3");
// GroupNames label

G:=SmallGroup(128,1638);
// by ID

G=gap.SmallGroup(128,1638);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,120,521,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=b,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=b^2*d>;
// generators/relations

׿
×
𝔽